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Abstract The glutathione (GSH)/glutathione disulfide

(GSSG) redox couple is involved in several physiologic

processes in plants under both optimal and stress condi-

tions. It participates in the maintenance of redox

homeostasis in the cells. The redox state of the GSH/GSSG

couple is defined by its reducing capacity and the half-cell

reduction potential, and differs in the various organs, tis-

sues, cells, and compartments, changing during the growth

and development of the plants. When characterizing this

redox couple, the synthesis, degradation, oxidation, and

transport of GSH and its conjugation with the sulfhydryl

groups of other compounds should be considered. Under

optimal growth conditions, the high GSH/GSSG ratio

results in a reducing environment in the cells which

maintains the appropriate structure and activity of protein

molecules because of the inhibition of the formation of

intermolecular disulfide bridges. In response to abiotic

stresses, the GSH/GSSG ratio decreases due to the oxida-

tion of GSH during the detoxification of reactive oxygen

species (ROS) and changes in its metabolism. The lower

GSH/GSSG ratio activates various defense mechanisms

through a redox signalling pathway, which includes several

oxidants, antioxidants, and stress hormones. In addition,

GSH may control gene expression and the activity of

proteins through glutathionylation and thiol-disulfide con-

version. This review discusses the size and redox state of

the GSH pool, including their regulation, their role in redox

signalling and defense processes, and the changes caused

by abiotic stress.
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Introduction

One consequence of the aerobic life form is the continuous

formation of reactive oxygen species (ROS), a process

enhanced by abiotic stresses. ROS levels need to be con-

trolled and various antioxidants have evolved for this

purpose. Glutathione (GSH) is involved in both the direct

and the indirect control of ROS concentrations (May and

others 1998; Noctor and Foyer 1998; Foyer and Noctor

2005). As a component of the ascorbate-glutathione path-

way, it takes part in the removal of excess H2O2 (Noctor

and Foyer 1998), in a reaction in which GSH is oxidized.

The high ratio of GSH to its oxidized form, glutathione

disulfide (GSSG), occurring under optimal growth condi-

tions can be restored by means of higher glutathione

reductase (GR) activity, increased GSH synthesis,

decreased GSH degradation, or the transport of GSH and

GSSG. Besides the GSH-ascorbate cycle, GSH may also

participate in H2O2 degradation in a reaction catalyzed by

glutathione peroxidase (GPx). However, the existence of

GSH-specific peroxidases in plants is questionable

because, according to Navrot and others (2006), plant GPxs

do not react with GSH, but only with thioredoxins (Trxs).

Besides H2O2, GSH removes lipid peroxides, methylgly-

oxal, and herbicides (Moons 2005; Rausch and others

2007; Yadav and others 2008). The reaction is catalyzed by
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GSH S-transferases (GST) and the conjugates are trans-

ported to the vacuoles. GSH not only participates in the

direct detoxification of ROS, it may also protect cells

against unfavorable stress effects through the activation of

various defense mechanisms due to its involvement in

redox signalling (Foyer and others 1997; Apel and Hirt

2004; Mittler and others 2004; Foyer and Noctor 2005;

Mullineaux and Rausch 2005; Pitzschke and others 2006).

In this signalling pathway, GSH interacts with ROS, redox

molecules [Trxs, glutaredoxins (Grxs)], and plant hor-

mones [salicylic acid (SA), abscisic acid (ABA)]. Besides

the control of ROS levels, GSH takes part in the regulation

of growth, development, the cell cycle, gene expression,

and protein activity due to its effect on the redox state of

the cells (Noctor and others 1998; Aslund and Beckwith

1999; Ogawa 2005; Shao and others 2008). It is also

involved in the transfer and storage of sulfur (Herschbach

and Rennenberg 2001) and in the detoxification of heavy

metals, which form complexes with GSH-derived phyto-

chelatins (Blum and others 2007).

The protective and regulatory roles of GSH are based on

changes in its redox state which is defined by the reducing

capacity of GSH (GSH concentration) and the half-cell

reduction potential of the GSH/GSSG couple (EGSSG/2GSH).

The EGSSG/2GSH value can be calculated from the GSH and

GSSG concentrations using the Nernst equation (Schafer

and Buettner 2001). It differs in various organs, tissues,

cells, and compartments and also changes during growth

and development of the plants. In this review the stress-

induced temporal and spatial changes in size and redox

state of the GSH pool are discussed, including their regu-

lation, their role in redox signalling, and defense processes.

Stress-Induced Changes in the Size of the Glutathione

Pool

The simplest way to obtain insight into the role of GSH in

stress response is the measurement of total glutathione

(TG) concentrations in stressed plants. However, this result

gives no information about its redox state. The greater TG

contents observed in spruce during the winter (Anderson

and others 1992) and in chilling-tolerant maize genotypes

compared to sensitive ones during cool spring periods in

the field (Leipner and others 1999) indicated a possible

protective role of GSH during low-temperature stress. This

assumption was corroborated in growth chambers by

comparing maize and rice genotypes with different levels

of stress tolerance (Guo and others 2006; Kocsy and others

2001a). The importance of GSH was also shown in the case

of heat stress which resulted in higher TG content in wheat

and maize (Nieto-Sotelo and Ho 1986; Dash and Mohanty

2002). The TG content was increased not only by extreme

temperatures but also by water deficit in sunflower seed-

lings (Sgherri and Navari-Izzo 1995) and detached poplar

leaves (Morabito and Guerrier 2000), and by salt treatment

in groundnut cell lines (Jain and others 2002). In addition, a

comparison of various plant species revealed that salt tol-

erance was greater for those that had higher TG content

(Tepe and Harms 1995). The involvement of GSH in the

response to heavy-metal stress was also demonstrated

because the TG content was reduced by cadmium in bread

wheat (Lin and others 2007) and by copper in Silene cu-

cubalus as a result of increased phytochelatin synthesis (de

Vos and others 1992), which detoxifies heavy metals by

forming complexes. The measurement of abiotic stress-

induced changes in TG levels and their comparison in

several genotypes with different stress tolerances gave a

first indication about the participation of GSH in the stress

response. However, a better understanding of the role of

GSH in stressed plants was possible only when GSH and

GSSG contents were measured because even at constant

TG levels, changes in the ratio of the two forms influence

the redox state of the GSH/GSSG couple.

Redox State of Glutathione in Stressed Plants

The redox state of the GSH pool was initially determined by

simultaneous spectrophotometric detection of GSH and

GSSG (Mergel and others 1979). Later on more sensitive

high-performance liquid chromatography (HPLC) methods

were introduced for monitoring the concentrations of GSH

and GSSG and their precursors and homologs (Kranner and

Grill 1996; Potesil and others 2005; Rellán-Alvarez and

others 2006). In one HPLC method that detects the fluo-

rescent monobromobimane derivatives of thiols, the levels

of total and reduced thiols [cysteine (Cys), c-glutamylcys-

teine (cEC), GSH, reduced hydroxymethylglutathione

(hmGSH) and homoglutathione (hGSH)] can be determined

separately after reduction (Kranner and Grill 1996). The

combination of HPLC separation of thiols with electro-

chemical detection allowed the simultaneous determination

of Cys, GSH, GSSG, and phytochelatins (Potesil and others

2005) and excludes possible mistakes originating from their

separate detection. An HPLC electrospray/mass spectrom-

etry method made simultaneous measurement of GSH,

GSSG, hGSH, and homoglutathione disulfide (hGSSG)

possible (Rellán-Alvarez and others 2006), and a capillary

zone electrophoresis approach ensured the simultaneous

analysis of GSH and GSSG (Mendoza and others 2004).

One disadvantage of the latter three methods compared to

fluorescent detection is that the reduced and oxidized forms

of the GSH precursors could not be determined.

Using HPLC separation and fluorescent detection, the

importance of the high reduced/oxidized thiol ratio in
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response to low-temperature stress was shown in wheat,

where higher GSH/GSSG and reduced/oxidized hydrox-

ymethylglutathione (hmGSH/hmGSSG) ratios were found

in freeze-tolerant compared to freeze-sensitive genotypes

(Kocsy and others 2001a). In addition, higher GR activity

was detected in tolerant wheat and maize genotypes at

suboptimal temperatures and in Picea abies during the

winter, indicating the involvement of GR in the mainte-

nance of a high GSH/GSSG ratio in stressed plants

(Esterbauer and Grill 1978; Leipner and others 1999; Ko-

csy and others 2001a). Besides the increase in total GR

activity, the appearance of new, cold-specific GR isoen-

zymes with high activity at low temperatures is necessary

for the efficient reduction of GSSG, as described for cold-

hardened spruce (Hausladen and Alscher 1994). As in the

case of cold-hardened wheat, the GSH/GSSG ratio at high

temperatures correlated with heat tolerance in wheat and

maize (Kocsy and others 2004a, c). The effective removal

of H2O2 by GSH during heat stress is also facilitated by

increased GR activity observed in mustard seedlings (Dat

and others 1998), Besides extreme temperatures, mainte-

nance of a high GSH/GSSG ratio and GR activity also play

an important role in salt, desiccation, and drought tolerance

as found in tomato, Myrothamnus flabellifolia, and wheat,

respectively (Shalata and others 2001; Kranner and others

2002; Kocsy and others 2004b). Contrary to the other

abiotic stresses, toxic concentrations of copper shifted the

GSH/GSSG couple to a more oxidized state in Silene cu-

cubalus, which could be the result of the use of GSH for

phytochelatin synthesis (de Vos and others 1992). This

shift was prevented in cadmium-treated soybean roots due

to the induction of GR (Ferreira and others 2002).

Studies carried out on several plant species subjected to

various abiotic stresses indicate that a high GSH/GSSG

ratio, maintained by increased GSH synthesis and/or GSSG

reduction, may be necessary for efficient protection of

plants against abiotic stress-induced accumulation of ROS.

Compared with the GSH/GSSG ratio, the half-cell reduc-

tion potential of the GSH/GSSG couple, the EGSSG/2GSH

value, which can be calculated from the concentration of

GSH and GSSG, is more closely correlated with the bio-

logical status of the cell (Schafer and Buettner 2001). At a

value of around -240 mV the cells proliferate, at around -

200 mV they differentiate, and at -170 mV apoptosis

occurs. Kranner and others (2006) found this parameter to

be a universal marker of cell viability, which could thus be

used to monitor stress-induced damage. The EGSSG/2GSH

value can be maintained not only by reduction of GSSG,

but also by its export. However, because of the reduced

size of the GSH pool, the buffering capacity of the GSH/

GSSG redox couple will be smaller (Schafer and Buettner

2001). In maize, various abiotic stresses resulted in minor

changes in the EGSSG/2GSH value, but there were substantial

changes in the GSH concentration (Table 1). Although

maize lines with different levels of stress tolerance had

widely different GSH contents, the deviation in the half-

cell reduction potential was much smaller, which may be

based on the appropriate adjustment of GSSG concentra-

tions. Thus, plants are able to maintain the EGSSG/2GSH

value under moderate stress conditions and, depending on

the EGSSG/2GSH value, physiologic processes are not

disturbed.

Temporal and Spatial Changes in the Glutathione

Content and in the Ratio of its Reduced to Oxidized

Form Under Stress Conditions

To accurately describe the involvement of GSH in stress

responses, it is necessary to determine the temporal and

spatial changes in its concentration and in the GSH/GSSG

ratio. The rapid initial decrease in GSH and hmGSH con-

tents during the first day of cold hardening coincided with a

similar change in the GSH/GSSG and hmGSH/hmGSSG

ratios in shoots and crowns of cold-hardened wheat (G.

Kocsy, unpublished results). Later on, during the first week

of the 21-day treatment there was a transient increase in

both parameters of the two thiols in the shoots, whereas

there was no significant change in their levels in the

crowns. As with the cold treatment, drought also resulted in

an initial decrease in the GSH/GSSG ratio, but this change

was followed by another decrease during the second half of

the 23-day stress period (Tausz and others 2004). After salt

stress the GSH level and the GSH/GSSG ratio were lower

after 1 week compared to the 3-day treatment in the maize

inbred line Z7 (Kell}os and others 2008). These results

Table 1 Reduced glutathione (GSH) and half-cell reduction potential

of the GSH/GSSG redox couple (EGSSG/2GSH) in leaves of maize

seedlings following 1 week of treatment

Treatment GSH [nmol (g FW)-1] EGSSG/2GSH (mV)

Penjalinan Z7 Penjalinan Z7

C 5.9 17.2 -288.7 -313.8

ABA 109.3 4.7 -374.7 -277.4

SA 92.1 126.7 -369.0 -378.9

H2O2 82.7 119.6 -372.4 -373.5

NaCl 92.4 19.9 -365.1 -328.4

PEG 70.4 134.3 -354.8 -373.7

Dark 158.5 16.5 -371.8 -315.9

SD 42.3 31.3

Z7 = chilling- and drought-tolerant line; Penjalinan = chilling- and

drought-sensitive line (Kocsy and others 2004a; Kell}os and others

2008); ABA = 0.1 mM abscisic acid; SA = 0.5 mM salicylic acid;

H2O2 = 1 mM hydrogen peroxide; NaCl = 200 mM sodium chlo-

ride; PEG = 15% polyethylene glycol 4000; Dark = continuous

dark; SD = significant difference at the p \ 5% level
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indicate that GSH may have an important role in ROS

detoxification during the initial phase of various abiotic

stresses. The decrease in the GSH/GSSG ratio could be due

to the removal of ROS in the form of glutathione conju-

gates (GS conjugates) or to GSH degradation.

When investigating the spatial changes in GSH content

in maize and wheat at low temperatures, similar changes

were found in shoots and roots (Kocsy and others 2001a).

Following osmotic stress there was a similar increase in TG

percentage in the shoots in both drought-tolerant and -

sensitive wheat genotypes (Fig. 1). However, the GSH/

GSSG ratio was higher in the tolerant genotype under both

control and stress conditions (Kocsy and others 2004b,

Table 2). The GSH/GSSG ratio was similar in the shoots

and roots (Table 2) under control and osmotic stress con-

ditions. The changes in the size and redox state of the GSH

pool at the cellular level could be even more important for

the response to abiotic stress than the alteration of these

parameters in various organs or tissues (Meyer 2008).

Under control conditions different GSH levels were found

in various cell types (Rennenberg and others 2007), which

may be the result of the compartmentalization of GSH

metabolism (Kopriva and Koprivova 2005). Chilling

increased c-glutamylcysteine synthetase (cECS) transcript

and protein levels in the bundle sheath but not in the

mesophyll cells, which could be the reason for the different

GSH levels in the two cell types (Gómez and others

2004b).

Studies on the subcellular localization of GSH showed

that GSH synthesis is possible in the chloroplasts and

cytosol and that the degradation of GSH and GS conjugates

occurs in the vacuoles and perhaps in the apoplast.

Therefore, large GSH redox gradients may exist between

the various subcellular compartments (Foyer and others

2001). Thus, it is important to monitor the GSH and GSSG

levels in the individual organelles (Schafer and Buettner

2001). The fluorescent dyes monochlorobimane and mer-

cury orange were successfully used for detection of GSH in

living cells of Allium cepa (Müller and others 1999). A

specific antibody raised against GSH was appropriate for

monitoring its intracellular distribution in various cell

compartments (Müller and others 2005). However, these

methods did not allow the detection of GSSG or of changes

in the GSH/GSSG ratio occurring during the response to

abiotic stress. In addition, the fluorescent dyes may not be

able to penetrate all the organelles. These problems could

be solved using redox-sensitive green fluorescent protein,

which is able to sense the redox potential of the cellular

GSH buffer via Grx as a mediator (Meyer and others 2007).

The usefulness of this system was demonstrated in Ara-

bidopsis roots, in which the GSH/GSSG ratio was modified

using exogenous H2O2 or dithiothreitol, and in the detec-

tion of wounding-induced redox changes in Arabidopsis.

The complete oxidation of GSH, typical of the endoplas-

matic reticulum, could also be detected via the transient

expression of redox-sensitive green fluorescent protein in

tobacco (Meyer and others 2007).

Tracking of compartment-specific changes in the redox

state of GSH is very important in relation to the redox

regulation of the proteins. For example, cECS is localized

exclusively in the cytosol (Pasternak and others 2008) and

is active in the oxidized state (Jez and others 2004),

whereas the active form of the nonexpressor of pathogen-

related genes (NPR1) is reduced and localized in the

Fig. 1 Relative amount of TG in shoots and roots of the drought-

tolerant Triticum aestivum cv. Cheyenne (Ch) and drought-sensitive

Triticum spelta wheat genotypes under control and osmotic stress

conditions. Seedlings grown in hydroponics were treated with 11%

polyethylene glycol (PEG) for 3 days

Table 2 Comparison of the GSH/GSSG ratio in shoots and roots of

drought-tolerant Triticum aestivum cv. Cheyenne (Ch) and drought-

sensitive Triticum spelta wheat genotypes under control and osmotic

stress (3-day 11% polyethylene glycol [PEG]) conditions

GSH/GSSG

Shoot Root

Ch

Control 14.9 15.4

PEG 13.5 14.3

Tsp

Control 10.6 9.2

PEG 7.8 6.2

SD 1.9
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nucleus (Mou and others 2003). Because both proteins are

involved in the stress response, their simultaneous activa-

tion may be necessary. This would require different redox

environments, which could be ensured by the localization

of cECS and NPR1 in different cell compartments. If

proteins differing in their redox activation mechanism need

to be activated successively during the stress response,

their induction could be ensured by changes in the redox

state of the relevant compartment.

Taken together, current methods make it possible to

detect GSH and changes in the redox state of GSH, even at

subcellular levels, thus promoting a better understanding of

its participation in stress responses.

Stress-Induced Changes in the Synthesis of Glutathione

The stress-induced changes in GSH levels and the GSH/

GSSG ratio may derive from altered GSH synthesis. GSH

is a tripeptide (c-glutamylcysteinyl glycine), which is

synthesized in two steps. First the formation of cEC is

catalyzed by cECS, then a glycine is added to the dipeptide

by GSH synthetase (GSHS). The regulatory enzyme of

GSH synthesis is cECS (Rüegsegger and Brunold 1992;

Rennenberg and others 2007). Besides the general occur-

rence of GSH, hGSH (c-glutamylcysteinyl-b-alanine) is

present in the Fabaceae family (Klapheck 1988) and

hmGSH (c-glutamylcysteinyl-serine) is present in the

Gramineae family (Klapheck and others 1991).

The cold-induced increase in the TG concentration in

maize was the result of a greater synthesis rate, as

demonstrated by the incorporation of 35S from sulate into

GSH and the higher activity of the two enzymes

involved in GSH synthesis (Kocsy and others 2001a). In

addition, chilling increased the cECS activity and cEC

content in the bundle sheath cells of maize leaves

(Gómez and others 2004b). Osmotic stress, high tem-

perature, and cold treatments induced a greater increase

in GSH and hmGSH synthesis in tolerant wheat geno-

types than in sensitive ones, as shown in 35S-labeling

experiments (Kocsy and others 2000, 2004b, c). After

NaCl treatment the cECS, GSHS, and GST activity was

much greater in a tolerant cotton cell line than in a

sensitive one, indicating adaptation at the level of GSH

synthesis, GSSG reduction, and GS-conjugate formation

(Gossett and others 1996). Following cadmium stress

enhanced synthesis of GSH and phytochelatins was

observed in various plant species (Mendoza-Cózati and

others 2005), and in maize was based on increased cECS

activity (Rüegsegger and Brunold 1992). Data in the

literature demonstrate that the abiotic stress-induced

increase in the GSH content is due, at least partly, to a

higher rate of GSH synthesis.

The effect of abiotic stress on GSH synthesis can be

monitored in various organs and cell compartments using

selective antibodies against GSH and its precursors, Cys,

glutamate, and glycine (Zechmann and Müller 2008;

Zechmann and others 2006). Using this technique, 50% of

TG was found in the mitochondria under control conditions

and its relative level varied between 7 and 20% in the other

organelles in the leaves and roots of Cucurbita pepo, as

calculated from the data of Zechmann and Müller (2008)

(Fig. 2). Virus infection resulted in a two- to threefold

greater increase in Cys and GSH levels in plastids and

nuclei compared with mitochondria (Zechmann and Müller

2008). Based on this observation, it can be anticipated that

abiotic stresses also induce different changes in the con-

centration of GSH and its precursors in the various

organelles.

Abiotic stress-induced changes in the redox state of

GSH precursors may also influence the synthesis and redox

state of GSH, because there were similar differences in the

ratios of GSH/GSSG and hmGSH/hmGSSG and their

reduced/oxidized precursors between tolerant and sensitive

wheat varieties subjected to osmotic or heat stress (Kocsy

and others 2004b, c). Cystine reductase was described in

pea (Romano and Nickerson 1954), but stress-induced

changes in its activity were not studied. The accumulation

of c-glutamylcystine (ESSE), the oxidized form of the

other GSH precursor in tobacco overexpressing cECS

(Creissen and others 1999), indicates that no enzyme exists

for its efficient reduction in plants; therefore, it can be

Fig. 2 Relative subcellular

amounts of TG in leaves (a) and

roots (b) of Cucurbita pepo
under control conditions. No

glutathione could be detected in

the vacuoles of either organ.

Percentages were calculated

from the data published by

Zechman and Müller (2008)
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removed only by degradation or sequestration to the

vacuole.

Experiments investigating the effects of abiotic stress on

GSH synthesis in plant organs should be complemented in

the future with studies at the cellular and subcellular levels.

Stress-Induced Changes in the Degradation,

Conjugation, and Transport of Glutathione

The accumulation of TG under environmental stress con-

ditions could be due not only to increased synthesis but

also to less intense degradation. Whereas GSH synthesis is

performed in the chloroplast and cytosol, GSH and GS-

conjugate degradation is restricted to the vacuole and

perhaps to the apoplast (Foyer and others 2001). c-Glut-

amyltranspeptidases (GGT) are essential for the

degradation of GSH and GS conjugates. In Arabidopsis

four GGT genes were identified and their temporal and

spatial patterns in the degradation of GSH and its metab-

olites were determined, revealing an appreciable

overlapping of the GGTs (Martin and others 2007).

Recently, a GGT-independent pathway of GSH catabolism

to glutamate via 5-oxoproline was described in Arabidopsis

(Ohkama-Ohtsu and others 2008). In addition, phytochel-

atin synthase was found to play a role in the plant-specific

degradation of GS conjugates (Blum and others 2007).

GGT can also catalyze the degradation of GSSG (Ohkama-

Ohtsu and others 2007). The effect of abiotic stress on

GGT activity was described in pine, where it decreased

during autumn, allowing the accumulation of GSH, which

may be involved in the natural cold-hardening process

(Taulavuori and others 1999).

Besides synthesis and degradation, the conjugation of

GSH with lipid peroxides, toxic metabolic products, or

xenobiotics also influences its concentration, as shown in

various plant species (Dixon and others 2002; Anderson

and Davis 2004). This reaction is catalyzed by GST, which

is induced by abiotic stresses (Coleman and others 1997).

Conjugation takes place in the cytoplasm and the conju-

gates are transferred to the vacuole for further processing

(Dixon and others 2002).

The TG level is also affected by the transport of GSH

and GSSG. GSH is a long-distance transport metabolite for

transporting reduced sulfur between shoots and roots and

into developing seeds (Herschbach and Rennenberg 2001;

Cairns and others 2006). The uptake of GSH into the cells

was studied in rice where a putative GSH transporter was

cloned, the function of which may be the retrieval of GSSG

and GS conjugates from the apoplast into the cytosol under

stress conditions (Zhang and others 2004). GSH and GSSG

are both taken up via proton symport, but the ion fluxes

accompanying GSSG and GSH uptake are different,

indicating that several parallel GSH transport mechanisms

exist in plants (Foyer and others 2001). In contrast with the

plasma membrane GSH transport system, tonoplast trans-

porters have been studied more extensively (Foyer and

others 2001). GSSG may be a substrate for ABC (ATP-

binding casette) transporters on the tonoplast, and under

oxidative stress conditions GSSG may be transported from

the cytosol to the vacuole (Foyer and others 2001). The

transport of GSH and its precursor cEC is important in the

regulation of GSH synthesis. Pasternak and others (2008)

demonstrated in transgenic Arabidopsis that consistent with

the exclusive plastidic location of cECS, cEC is exported

from the plastids to supply the cytosol with the immediate

precursor for GSH synthesis. The effective control of GSH

synthesis is ensured through feedback inhibition of cECS

due to the efficient import of GSH into the plastids.

Coordinated changes in the synthesis, degradation,

transport, and conjugation of GSH adjust its level and the

GSH/GSSG ratio to stress conditions, allowing the effec-

tive participation of GSH in defence mechanisms.

Regulation of the Glutathione Metabolism in Stressed

Plants

Stress-induced changes in the GSH metabolism can be

regulated at the transcriptional, translational, and post-

translational levels. The expression of the gene coding for

cECS, the rate-limiting enzyme in GSH synthesis, was

induced by chilling and ozone fumigation in maize and

Arabidopsis, respectively (Gómez and others 2004b; Sa-

saki-Sekimoto and others 2005). Following various abiotic

stress treatments, the expression of cECS and GR genes

increased in maize, and corresponding changes could also

be detected at the level of GSH concentration and GR

activity (Kell}os and others 2008). Drought increased the

expression of the GR, GST, and GPx genes, resulting in

increases in the activities of the corresponding enzymes

(Anderson and Davis 2004). Results obtained for pea show

that the expression of the GR gene may be regulated by

GSSG through its interaction with a possible GSSG bind-

ing site in the promoter region (Creissen and others 1992).

The translational control of cECS activity was observed

in Arabidopsis following H2O2 treatment and in maize

subjected to chilling because the amount of enzyme protein

increased (Xiang and Bertrand 2000; Gómez and others

2004b). The binding of the complex controlling the trans-

lation of cECS was induced by GSH and inhibited by

GSSG under in vitro conditions (Xiang and Bertrand

2000). In pea higher GR activity was not accompanied by

increased GR gene expression after heat stress (Kurganova

and others 1999; Escaler and others 2000), suggesting the

existence of translational or post-translational regulation.
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The molecular mechanism of the post-translational

regulation of cECS was recently described. According to

the hypothesis of Jez and others (2004), cECS is a

monomeric protein undergoing reversible conformational

changes in response to oxidative stress in Arabidopsis.

The Cys186-Cys406 disulfide bond has a dominant regu-

latory role, as shown by redox titration. cECS is active in

its oxidized form and the ratio of the reduced to oxidized

form of the enzyme changes under stress conditions

(Hicks and others 2007). The midpoint redox potential of

cECS (-318 mV at pH 7.0; Hicks and others 2007) is very

similar to the value of EGSSG/2GSH in nonstressed cells

(Meyer and others 2007). Hothorn and others (2006) came

to the conclusion that the active enzyme in Brassica

juncea is a dimer and that the reduction of the Cys178-

Cys398 disulfide bridge (CC2) (present in the whole plant

kingdom and in a-proteobacterial cECS) facilitates the

formation of monomers, thus decreasing the activity.

Further comparative studies on CC2 revealed that plant

cECS are related to proteobacterial ones, but their redox

regulation via CC2-dependent dimerization evolved later

(Gromes and others 2008). The reduction of the Cys341-

Cys356 disulfide bond (present only in the rosid clade)

shields the active site. The relationship between high

GSH levels and the inhibition of cEC synthesis can be

explained by both assumptions. Mutation near the active

site of cECS resulted in impaired Cys binding in rax1-1

(regulator of ascorbate peroxidase) in Arabidopsis plants

(Hothorn and others 2006). The activation of GSHS was

not based on thiol-disulfide transition, as shown by the

site-directed mutagenesis of active-site residues in Ara-

bidopsis (Herrera and others 2007). The specific targeting

of GSHS to the cytosol and the chloroplasts is achieved

by multiple-transcription initiation (Wachter and others

2005). Unlike the two enzymes of GSH synthesis, the

molecular mechanism of GR activation was not described.

The post-translational regulation of GR was found in

Pinus sylvestris L., where GSSG treatment increased

enzyme activity without changing the amounts of GR

mRNA and protein or the GR izoenzyme pattern (Wingsle

and Karpinski 1996), thus indicating the activation of the

existing GR protein. The induction of GR isozymes was

not associated with an enhancement of the GR mRNA

and protein levels in wheat, indicating the possibility of

post-translational modification (Yannarelli and others

2007).

The articles cited above show that the enzymes involved

in GSH metabolism are regulated at different levels in

various plant species. Control of the corresponding

enzymes may also depend on the organ and cell type and

on the developmental stage. Future studies on the regula-

tion of the enzymes involved in GSH degradation and

conjugation are necessary.

Study of Glutathione Metabolism Through its

Manipulation and in Mutants Under Stress Conditions

The role of GSH in the stress response can be demonstrated

by manipulating its level. In a chilling-sensitive maize

genotype, the GSH content and chilling tolerance increased

when herbicide safeners were added (Kocsy and others

2001b), but when increasing concentrations of buthionine

sulfoximine, a specific inhibitor of cECS, were simulta-

neously applied, the plants gradually became sensitive

again. These results were confirmed by the inhibition of

GSH synthesis in a tolerant maize genotype that became

sensitive following buthionine sulfoximine treatment (Ko-

csy and others 2001a). Chilling tolerance could be restored

by the addition of exogenous cEC or GSH. In these studies

a correlation was found between GSH level, GR activity,

and chilling tolerance in maize.

In transgenic plants that overexpress genes involved in

GSH metabolism, the role of GSH in response to abiotic

stresses was also confirmed. Although Noctor and others

(1998) observed higher GSH content and resistance to

paraquat-induced oxidative stress in poplar transformed

with the cECS gene, Bittsanszky and others (2006) were

unable to detect elevated paraquat tolerance in transgenic

poplar overproducing GSH. This discrepancy may have

been due to differences in cultivation and treatment con-

ditions. Transgenic poplars overexpressing cECS have

increased tolerance to chloracetanilide herbicides and

accumulate significantly more Cd than wild-type plants,

suggesting that they could be used for the removal of

herbicides and Cd from the soil for phytoremediation

(Gullner and others 2001; Koprivova and others 2002). The

overexpression of cECS in the cytosol and chloroplasts

seems to affect GSH levels in a compartment-specific

manner (Hartmann and others 2003). The overexpression

of GR increased the antioxidant capacity and decreased the

sensitivity to high light intensity and low temperature

(Foyer and others 1995). The role of GST during salt stress

was shown in transgenic tobacco, where the overexpression

of the enzyme increased the GSH content and salt tolerance

(Roxas and others 1997). Following application of para-

quat, GST activity was significantly higher in transgenic

rice overexpressing GST than in the wild type (Zhao and

Zhang 2006). Interestingly enough, genetic manipulation

of proline synthesis also affected GSH concentrations in

soybean subjected to drought, which can be explained by

the competitive use of glutamate, the common precursor of

the two compounds (Kocsy and others 2005).

Besides the manipulation of GSH and GSSG contents,

the use of mutants with an altered GSH metabolism is also

a powerful tool for studying the role of GSH in the stress

response. The GSH-deficient Arabidopsis mutant cad2

(cadmium-sensitive cECS mutant, 75-80% reduction in
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GSH content) was sensitive to cadmium, demonstrating the

involvement of GSH in the detoxification of heavy metals

(Cobbett and others 1998). The low GSH concentration in

the pad2-1 (phytoalexin deficient) mutant (mutation in the

cECS gene, 80% reduction in GSH content) resulted in

increased susceptibility to Phytophthora brassicae infec-

tion. In the rax1-1 (cECS) mutant, a 50–80% decrease in

the GSH level was found and the expression of the defense

genes changed (Ball and others 2004). The more severe

decrease in the GSH content in the rml1 (root meristem-

less) cECS mutant arrested plant development even under

optimal growth conditions (Vernoux and others 2000).

These mutants could presumably also be used to study the

role of GSH in the response to abiotic stress.

Chemical or genetic manipulation of GSH metabolism

and mutants with altered GSH levels were suitable for

proving the protective role of GSH and of the corre-

sponding metabolic enzymes in the response to abiotic

stresses.

Involvement of Glutathione in Redox Signalling

The interaction between ROS and antioxidants may pro-

vide the metabolic contact point between signals

originating from metabolic pathways and the environment,

thus regulating the induction of adaptive or death processes

(Foyer and Noctor 2005). The antioxidative system,

including the GSH/GSSG redox couple, may have evolved

for the adjustment of the cellular redox state and redox

signalling and for the orchestration of gene expression

(Noctor and Foyer 1998). Several regulatory and structural

genes controlled by the thiol-disulfide status and ROS

signalling have been identified in mutant and transgenic

Arabidopsis and in wild-type plants treated with dithio-

threitol or ROS-generating agents using transcript

profiling, which could clarify the function of the redox

network (Gadjev and others 2006; Kolbe and others 2006).

This network controls the level of ROS by integrating

signals from different cell compartments during abiotic

stress, and the GSH/GSSG couple participates in its fine

tuning (Meyer 2008).

The redox state of the GSH/GSSG couple is altered

under abiotic stress conditions because GSH is oxidized

during the removal of the accumulating H2O2 under abiotic

stress conditions. Stress-induced changes in the H2O2

content, and subsequently in the GSH/GSSG ratio, have a

central role in signalling due to their effects on transcrip-

tion, translation, post-translational modification of proteins,

and metabolic processes (Fig. 3) (Foyer and others 1997;

Neill and others 2002; Dietz 2008; Quan and others 2008).

A histidine kinase was suggested as a putative H2O2 sensor

in a cyanobacterium (Kanesaki and others 2007). The

influence of environmental conditions on redox signalling

was shown in knockout mutants for catalase2 (Cat2),

because the increased H2O2 content resulted in acclimation

under short-day conditions and in death under long-day

conditions (Queval and others 2007). In addition, the day

length also affected the amount of GSH and the redox state

of the GSH/GSSG couple and the expression of defense

genes. The effect of alterations in the H2O2 level on tran-

scription was also shown in ascorbate peroxidase-deficient

mutants (Miller and others 2008). In addition, it was con-

cluded after exogenous H2O2 application and from

experiments with catalase-deficient mutants that H2O2

affects the expression of several regulatory and structural

genes involved in the stress response (Desikan and others

2001; Vandenabeele and others 2003). The effect of H2O2

on gene expression may be transmitted through a mitogen-

activated protein kinase cascade (Fig. 3) (Apel and Hirt

2004). A specific example of the regulatory role of H2O2

and the GSH/GSSG couple in transcription factors was

described in the case of OxyR (oxygen radical-responsive),

which is activated through the formation of disulfide

bridges in Escherichia coli (Aslund and Beckwith 1999;

Kim and others 2002). Among other things, OxyR

increases the expression of genes coding for superoxide

dismutase (SOD) and peroxidases. Similarly to OxyR, the

oxidized form is also active in the case of cECS (Hicks and

others 2007), whereas the reduced form is active for NPR1

(Mou and others 2003). Another example of the regulatory

role of H2O2 in plants is the induction of catalase (Cat) and

GST genes (Polidoros and Scandalios 1999). In maize, an

antioxidant-sensitive element found in the promoter region

of the Cat gene strongly bound proteins transported from

the nucleus, but it did not interact with H2O2. This site was

similar to one described in the promoter of cECS and

Fig. 3 A general model for the involvement of the GSH/GSSG

couple in redox signalling. Glutathione may have a direct or indirect

regulatory role at the transcriptional or post-translational level due to

its interaction with other redox systems. Grx, glutaredoxin; GSH,

glutathione; GSSG, glutathione disulfide; MAP kinases, mitogen-

activated protein kinases; Prx, peroxiredoxin; Trx, thioredoxin
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MnSOD in animals. The post-transcriptional regulatory

role of H2O2 was shown in maize subjected to various

abiotic stresses, as the cECS and GR transcript levels either

remained constant or decreased parallel to changes in GSH

synthesis, the GSH/GSSG ratio, and GR activity (Kell}os

and others 2008). Besides H2O2, other ROS such as O2
•2

and •OH may also participate in redox signalling in plants,

as previously described in human and animal systems. A

signal transduction mechanism mediated by O2
•2 and by the

participation of GSH was proposed for the regulation of a

protein-tyrosine phosphatase in human epidermoid carci-

noma cells (Barrett and others 1999), while •OH was found

to be involved in the activation of a Ca2?-sensitive cation

channel in epithelial cells (Simon and others 2004).

Besides activating the genes involved in protection against

environmental stresses, ROS have an important role in

coordinating the expression of these genes during adapta-

tion to unfavorable environmental conditions (Vranová and

others 2002b).

The interaction between H2O2 and GSH in stress sig-

nalling was suggested in mungbean in which exogenous

H2O2 increased both GSH levels and chilling tolerance

(Yu and others 2003). The improvement of chilling tol-

erance could be a result of changes in the expression of

many genes. Correspondingly, in the Arabidopsis mutants

rax1-1 and cad2-1 (mutations in the cECS gene resulting

in decreased GSH content), GSH was shown to affect the

expression of several genes involved in protection against

environmental stresses (Ball and others 2004). The low

GSH concentration in the pad2-1 mutant (mutation in the

cECS gene) did not affect the transcript abundance of

cECS and GSHS, but after inoculation with Phytophthora

brassicae, their expression was much more strongly

induced in pad2-1 than in the wild type (Parisy and others

2007). The involvement of GSH in redox signalling is

confirmed by the observation that inter- and intracellular

GSH pools are linked by transport across the membranes,

the rate of which could be similar to that of synthesis, as

is the case for the chloroplast envelope (Noctor and

others 2002). GSH transport in plants may also be regu-

lated by antioxidants because the promoter of gene coding

for a GSH transporter in mammals contains a functional

antioxidant-responsive element (Wasserman and Fahl

1997).

The GSH/GSSG couple is able to modify the activity of

various compounds (enzymes, regulatory proteins) directly

through the reduction/oxidation of their disulfide bridges/

sulfhydryl groups and through the (de)glutathionylation of

sulfhydryl groups. The indirect regulation of proteins by

the GSH/GSSG couple may occur due to cross-talk

between GSH/GSSG and other redox systems through

glutathionylation or thiol-disulfide transition, which may

have a role in signalling and responses to abiotic stress

(Rausch and others 2007; Ying and others 2007). In Ara-

bidopsis, oxidative stress-induced glutathionylation was

described for a number of proteins, including Grx and

several GSTs (Dixon and others 2005). Trxs are inactivated

by glutathionylation, as shown in the case of chloroplastic

Trx f, the activity of which was decreased by increasing

ROS production (Michelet and others 2005). The formation

of GSH adducts increases the redox potential, as described

for plant Trx h2, which may affect the stress response

(Gelhaye and others 2003). Trxs can be activated by de-

glutathionylation, for which Grxs, members of the Trx

superfamily, are required (Nulton-Persson and others

2003). An interaction between the Trx and the GSH/Grx

redox system was also suggested by Rouhier and others

(2004). However, in their opinion the redox state of Trxs is

independent of this system. Based on studies with Ara-

bidopsis mutants deficient in the two NADPH-dependent

Trx reductases (ntra and ntrb), it was assumed that in the

absence of Trx reductases a GSH-dependent pathway

reduces Trxs h (Reichheld and others 2007). The Grx-

mediated reduction of Trxs was also suggested, but the

reduction of Trxs by GR cannot be excluded either

(Reichheld and others 2007). Grxs, which transfer electrons

reversibly between GSH and target proteins (Meyer 2008)

and may be glutathionylated (Dixon and others 2005), are

reduced, in turn, by specific Grx reductase (Michelet and

others 2005). A further possibility for the reduction of Trxs

is a reaction involving GPxs and peroxiredoxins (Prxs).

Redox changes in Trxs are important because they target

the intercellular disulfide bonds of proteins, which are

activated or inactivated (Besse and Buchanan 1997).

The possible interactions between glutathione, Trx, Grx,

and Prx and the involvement of their redox changes in

stress signalling will need to be clarified in further

experiments.

Cross-Talking with Other Signalling Pathways

H2O2 and the GSH/GSSG couple may interact with other

signalling pathways during the stress response (Fig. 4). NO,

an important regulatory molecule, affected H2O2 concen-

tration due to the inhibition of Cat and ascorbate peroxidase

(Clark and others 2000), whereas exogenous H2O2 activated

NO synthesis in tobacco (de Pinto and others 2006), sug-

gesting a bidirectional interaction between the two

compounds. NO also influenced GSH synthesis, as dem-

onstrated in Medicago trunculata roots in which the GSH

level and cECS and GSHS gene expressions were increased

by NO (Innocenti and others 2007). During the interaction

of GSH with NO, S-nitrosoglutathione (GSNO) is formed in

a reaction that may interconnect the ROS- and reactive

nitrogen-based signalling pathways (Neill and others 2002).
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The participation of GSNO in the stress response was

shown in Cd-treated plants (Barroso and others 2006). The

general regulatory role of NO in stressed plants was dem-

onstrated in several studies (for review see Arasimowicz

and Floryszak-Wieczorek 2007).

Another possibility for the activation of protective

mechanisms through H2O2 and the GSH/GSSG couple is

based on their interaction with Ca2? (Fig. 4). H2O2 treat-

ment alone or combined with low temperature increased

the Ca2? concentration in tobacco (Price and others 1994),

which could have a role in the Ca2?-dependent regulation

of the enzymes. In maize the interaction of Ca2? and ROS

was observed during the induction of the antioxidant sys-

tem by ABA, and it was concluded that Ca2? can be found

both before and after ROS in the signalling pathway related

to oxidative stress (Jiang and Zhang 2003). Yang and Po-

ovaiah (2002) postulated a dual role for Ca2? in the

regulation of H2O2 homeostasis: (1) During positive reg-

ulation H2O2 will be produced due to the activation of

NADPH oxidase, and (2) during negative regulation the

H2O2 concentration will decrease due to the activation of

Cat. Interestingly, Ca2? enhanced both the GSH concen-

tration and the stress tolerance in rice (Lu and others 1999).

In tobacco, however, GSH and GSSG treatment resulted in

a rapid, transient increase in the Ca2? level, suggesting that

GSH may be involved in the activation of Ca2?-dependent

protein kinases and in the early part of stress-induced

signalling pathways (Gómez and others 2004a). In plants,

Ca2? may interact not only with H2O2 but with other ROS.

This assumption is based on observations of trout hepatoma

cells, where the mobilization of Ca2? was induced by •OH

(Burlando and Viarengo 2005). Interactions between ROS,

Ca2?, and antioxidants were reviewed recently by Noctor

(2006).

The effect of abiotic stresses on H2O2, GSH, and GSSG

concentrations may be transmitted by various plant

hormones (Fig. 4). SA increased the chilling tolerance of

maize by inhibiting Cat, thus increasing the H2O2 concen-

tration (Horváth and others 2002, 2007). In contrast, SA-

induced H2O2 accumulation was not accompanied by the

inhibition of Cat or ascorbate peroxidase in germinating

wheat (Agarwal and others 2005), suggesting that the

influence of SA on H2O2 levels depends on the plant spe-

cies, the organ, and the interaction with environmental

effects. As also observed in chilled maize (Janda and others

1999), SA stimulated the formation of ROS in Arabidopsis

subjected to salt or osmotic stress (Borsani and others

2001). GSH and GR were affected by SA in a soybean cell

suspension (Knörzer and others 1999) and SA increased the

GR activity in rice leaves (Ganesan and Thomas 2001). SA

induced various alterations in cEC and GSH contents, GR

activity, and cECS and GR transcript levels in two maize

genotypes with different levels of stress tolerance (Kell}os

and others 2008); the cEC and GSH concentrations were

increased in both genotypes by SA. Consistent with this

observation, the overexpression of a gene coding for an

enzyme involved in SA degradation caused a decrease in

both the GSH concentration and the resistance to oxidative

stress in rice (Kusumi and others 2006). SA induces defense

gene activation by NPR1, the cellular localization of which

is regulated in turn by GSH; reduced NPR1 is transported to

the nucleus, where it regulates gene expression (Mou and

others 2003). SA-induced NO production was found in

Arabidopsis, and Ca2? accumulation was a component of

the signalling cascade (Zottini and others 2007).

Another stress hormone, ABA, induced changes in ROS

concentration in Arabidopsis, activating the Ca2? channels

of the cell membranes and increasing the Ca2? concen-

tration in the cytosol (Murata and others 2001). The

connection between the redox state of the cells and H2O2

and ABA was shown in the Arabidopsis mutant glutathione

peroxidase3 (ATGPX3) in which the addition of oxidized

ATGPX3 protein in vitro converted the protein phospha-

tase described in ABA insensitive2 (ABI2) mutants to its

oxidized form. ABI2, in turn, influences Ca2? channels and

stomatal closure (Miao and others 2006). In addition, ABA

influenced GR activity in the cytosol of rice (Kaminaka and

others 1998). In two maize genotypes differing in their

stress tolerance, ABA differentially affected the GSH

content, GSH/GSSG ratio, GR activity, and cECS tran-

script level (Kell}os and others 2008). In Vigna unguiculata,

not only GR activity but also expression of the corre-

sponding gene was increased by ABA (Contour-Ansel and

others 2006). Thus, ABA may affect the GSH/GSSG ratio

and redox signalling (Pastori and Foyer 2002).

Like SA and ABA, jasmonic acid (JA) also regulated

gene expression through H2O2, as found in tobacco (Mur

and others 2006). In addition, JA influenced GSH con-

centration and the genes involved in GSH metabolism in

Fig. 4 A model for possible cross-talking between redox and other

signalling pathways. The various signal transducers (Ca2?, NO) and

plant hormones (ABA, abscisic acid; JA, jasmonic acid; SA, salicylic

acid) may affect the GSH level and/or GSH/GSSG ratio directly or

through H2O2
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Arabidopsis (Xiang and Oliver 1998; Sasaki-Sekimoto and

others 2005). As with SA, ethylene, and NO, JA also

increased the transcript level of GST, suggesting that the

various plant growth regulators interact (Moons 2005).

A simplified model for the interaction of H2O2 and the

GSH/GSSG couple with other signalling molecules and

plant hormones is summarized in Figure 4. The order of the

components in the signalling pathway described above may

vary, and some components may be absent or additional

ones may be present depending on environmental effects,

plant species, organs, and cell types. Multidirectional for-

ward and backward interactions responsible for the

regulation of metabolic pathways may exist between the

compounds displayed in the figure to ensure the most

effective protection against environmental stress (Agarwal

and others 2005; Foyer and Noctor 2005; Noctor 2006;

Dietz 2008; Miller and others 2008).

Future Prospects

The following major challenges must be faced: (1) Clarifi-

cation of the role of subcellular changes in the redox state of

the GSH/GSSG couple in stressed plants, (2) study of the

interaction of GSH/GSSG with other signalling molecules

during the stress response, and (3) investigation of the effect

of changes in the redox state of the GSH/GSSG couple on

the transcript, protein, and metabolite profiles and on post-

translational modification of proteins [thiol-disulfide tran-

sition, (de)glutathionylation]. In addition, it would be very

interesting to discover how GSH evolved from being an

antioxidant to being a key intermediate in multiple-signal-

ling networks. To answer this question, the metabolism,

compartmentalization, and transport of GSH, its interaction

with other molecules, and the regulation of its redox

changes should be compared in prokaryotes and in uni- and

multicellular eukaryotes (animals and plants). Sequence

comparisons of the related genes and proteins and the

construction of phylogenetic trees could help to identify the

evolutional events. In prokaryotes GSH/GSSG probably

had a mainly antioxidant function, becoming a redox reg-

ulator during the evolution of multicellular organisms.
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Szabó Z, Lagler R, Tóth Z, Rennenberg H, Heszky L, K}omı́ves T

(2006) RT-PCR analysis and stress response capacity of

transgenic gshI-poplar clones (Populus x canescens) in response

to paraquat exposure. Z Naturforsch C 61:699–703

Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E

(2007) Function of phytochelatin synthase in catabolism of

glutathione-conjugates. Plant J 49:740–749

Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of

salicylic acid in the oxidative damage generated by NaCl and

osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–

1030

Burlando B, Viarengo A (2005) Ca2? is mobilized by hydroxyl

radical but not by superoxide in RTH-149 cells: the oxidative

switching-on of Ca2? signalling. Cell Calcium 38:507–513

Cairns NG, Pasternak M, Wachter A, Cobbett CS, Meyer AJ (2006)

Maturation of Arabidopsis seeds is dependent on glutathione

biosynthesis within the embryo. Plant Physiol 141:446–455

Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide

inhibition of tobacco catalase and ascorbate peroxidase. Mol

Plant Microbe Interact 13:1350–1384

Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-

deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis is

deficient in gamma-glutamylcysteine synthetase. Plant J 16:73–78

Coleman JOD, Randall R, Blake-Kalff MMA (1997) Detoxification

of xenobiotics in plant cells by glutathione conjugation and

vacuolar compartmentalization: a fluorescent assay using mono-

chlorobimane. Plant Cell Environ 20:449–460

Contour-Ansel D, Torres-Franklin ML, de Carvalho MHC, D’Arcy-

Lameta A (2006) Glutathione reductase in leaves of cowpea:

cloning of two cDNAs, expression and enzymatic activity under

progressive drought stress, desiccation and abscisic acid treat-

ment. Ann Bot 98:1279–1287

76 J Plant Growth Regul (2009) 28:66–80

123



Creissen GP, Edwards EA, Enard C, Wellburn AR, Mullineaux PM

(1992) Molecular characterization of glutathione reductase

cDNAs from pea (Pisum sativum L.). Plant J 2:129–131

Creissen G, Firmin J, Fryer M, Kular B, Leykand N, Reynolds H,

Pastori G, Wellburn F, Baker N, Wellburn A, Mullineaux P

(1999) Elevated glutathione biosynthetic capacity in the chloro-

plasts of transgenic tobacco plants paradoxically causes

increased oxidative stress. Plant Cell 11:1277–1291; correction

(2000) Plant Cell 12:301

Dash S, Mohanty N (2002) Response of seedlings to heat-stress in

cultivars of wheat: growth temperature-dependent differential

modulation of photosystem 1 and 2 activity, and foliar anitox-

idant defense capacity. J Plant Physiol 159:49–59

Dat JF, Foyer CH, Scott IM (1998) Changes in salicylic acid and

antioxidants during induced thermotolerance in mustard seed-

lings. Plant Physiol 118:1455–1461

de Pinto MC, Paradiso A, Leonetti P, de Gara L (2006) Hydrogen

peroxide, nitric oxide and cytosolic ascorbate peroxidase at the

crossroad between defence and cell death. Plant J 48:784–795

de Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione

depletion due to copper-induced phytochelatin synthesis causes

oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

Desikan R, Mackerness AH, Hancock JT, Neill S (2001) Regulation

of the Arabidopsis transcriptome by oxidative stress. Plant

Physiol 127:159–172

Dietz KJ (2008) Redox signal integration: from stimulus to networks

and genes. Physiol Plant 133:459–468

Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione

transferases. Genome Biol 3:3004.1–3004.10

Dixon DP, Skipsey M, Grundy NM, Edwards R (2005) Stress-induced

protein S-glutathionylation in Arabidopsis. Plant Physiol

138:2233–2244

Escaler M, Aranda MA, Roberts IM, Thomas CL, Maule AJ (2000) A

comparison between virus replication and abiotic stress (heat) as

modifiers of host gene expression in pea. Mol Plant Pathol

1:159–167

Esterbauer H, Grill D (1978) Seasonal variation of glutathione and

glutathione reductase in needles of Picea abies. Plant Physiol

61:119–121
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Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with

salicylic acid decreases the effects of chilling injury in maize

(Zea mays L.) plants. Planta 208:175–180

Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-

cysteine ligase. Functional properties, kinetic mechanism, and

regulation of activity. J Biol Chem 279:33463–33470

Jiang M, Zhang J (2003) Cross-talk between calcium and reactive

oxygen species originated from NADPH oxidase in abscisic

acid-induced antioxidant defence in leaves of maize seedlings.

Plant Cell Environ 26:929–939

J Plant Growth Regul (2009) 28:66–80 77

123



Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998)

Gene cloning and expression of cytosolic glutathione reductase

in rice (Oryza sativa L.). Plant Cell Physiol 39:1269–1280

Kanesaki Y, Yamamoto H, Paithoonrangsarid K, Shoumskaya M,

Suzuki I, Hayashi H, Murata N (2007) Histidine kinases play

important role in the perception and signal transduction of

hydrogen peroxide in the cyanobacterium, Synechocystis sp.

PCC 6803. Plant J 49:313–324
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